3.3、压电晶体法
压电晶体法(又称压电晶体频差法),采用石英谐振器为测量敏感元件,其工作原理是使空气以恒定流量通过切割器,进入由高压放电针和微量石英谐振器组成的静电采样器,在高压电晕放电的作用下,气流中的颗粒物全部沉降于测量谐振器的电极表面上,因电极上增加了颗粒物的质量,其振荡频率发生变化,根据频率变化可测定可吸人颗粒物的质量浓度,石英谐振器相当于一个超微量天平。
压电晶体法仪器可以实现实时在线检测。石英谐振器对其表面质量的变化十分敏感,使用一段时间后需要清洁。利用此原理的大气监测仪一般装备于环境监测自动站。
3.4、 β射线吸收法
β射线吸收式测量仪的工作原理是: 射线在通过颗粒物时会被吸收,当能量恒定时,β射线的吸收量与颗粒物的质量成正比。测量时,经过切割器,将颗粒物捕集在滤膜上,通过测量β射线的透过强度,即可计算出空气中颗粒物浓度。仪器可以间断测量,也可以进行自动连续测量,粉尘对β线的吸收与气溶胶的种类、粒径、形状、颜色和化学组成等无关,只与粒子的质量有关。β射线是由14C射线源产生的低能射线,安全耐用,其半衰期可达数千年,十分稳定。
3.5、微量振荡天平法
微量振荡天平法(TEOM法,英文名称Tapere Element Oscillating Microbalance),是近年发展起来的颗粒物浓度测量方法,测量原理是基于专利技术的锥形元件振荡微量天平原理,由美国R&P公司研制,符合美国EPA标准。此锥形元件于其自然频率下振荡,振荡频率由振荡器件的物理特性、参加振荡的滤膜质量和沉积在滤膜上的颗粒物质量决定。仪器通过采样泵和质量流量计,使环境空气以一恒定的流量通过采样滤膜,颗粒物则沉积在滤膜上。测量出一定间隔时间前后的两个振荡频率,*能计算出在这一段时间里收集在滤膜上颗粒物的质量,再除以流过滤膜的空气的总体积,得到这段时间内空气中颗粒物的平均浓度。
在大气自动监测系统中,美国R&P公司的RP1400a测尘仪用于实时连续监测空气中颗粒物的浓度,其测量精度和实时性是传统方法所无法比拟的。配以不同的切割器,RP1400a可用于测量PM2.5、PM10和TSP。仪器每2秒测量一次滤膜的振荡频率,同时仪器也可输出0.5、1、8、24h的平均浓度。但该仪器在测量时受温度、湿度影响较大,应特别注意。
3.6、电荷法
电荷法主要用在烟气中颗粒物(粉尘)的监测当烟道或烟囱内粉尘经过应用耦合技术的探头时,探头所接收到的电荷来自粉尘颗粒对探头的撞击、摩擦和静电感应。由于安装在烟道上探头的表面积与烟道的截面积相比非常小,大部分接收到的电荷是由于粒子流经过探头附近所引起的静电感应而形成。排放浓度越高,感应、摩擦和撞击所产生的静电荷*越强。即O/tocM/t(这里,Q代表电荷,M代表颗粒物量,t代表时间)。
电荷法技术包括直流耦合与交流耦合技术两种。
电荷法属于浮游测定法,可以实现现场在线监测。目前国内应用比较普遍的烟尘在线监测系统主要有:采用交流耦合技术的澳大利亚GOYEN(高原)公司的EMS6型,采用直流耦合技术的英国CODEL公司的MonoGard型。由于不同的颗粒材料会产生不同的感应、摩擦电流,此类设备必需在安装后进行须标定。
3.7、常用颗粒物检测方法比较
上述颗粒物质量或相对质量浓度的各种测量方法,根据的是颗粒物的不同性质与质量的直接或间接的关系,在某一方面有一定的长处,同时会带来某方面的缺点(见表1),在选择测定方法时一定要注意扬长避短。颗粒物滤膜称重法一般需要较长的采样时间,很难适用于要求快速得到测量结果的场合,不能测定粒子的时空分布,测量结果是一段时间内的平均值,操作也较复杂。相比较而言,其他浓度测量方法虽然存在一定误差,但在颗粒物自动在线连续检测方面是滤膜称重法所无可比拟的,应根据不同的测定目的来选择。在需要实时在线测定的场合要用到相对质量浓度测量方法,而在不需要在线连续测量或需要考虑可比性的情况下,要用滤膜称重法直接测量颗粒物的质量浓度,同时,滤膜称重法采集的颗粒物样品可以用来进行其它分析。
4、大气颗粒物浓度测试技术的发展趋势
随着自动化及信息技术的迅速发展,环境监测也由以人工采样和实验室分析为主,向自动化、智能化和网络化为主的监测方向发展;由较窄领域监测向全方位领域监测的方向发展。监测仪器逐步向高质量、多功能、集成化、自动化、系统化和智能化的方面发展。社会需要大量的*、使用方便、操作简单的大气颗粒物监测仪器、监控设备,应重点发展用于在线监测污染源烟尘、工业粉尘排放量(浓度或总量),包括测量相关参数:流量、含湿量、温度等,实现污染源排放浓度或总量监测以及监测和监控一体化的监测仪器,特别是适用于细微颗粒物(PM10、PM2.5)的采样和监测仪器。
要适应这个发展,必须加强环境监测仪器和监测技术现代化的基础研究,研究颗粒物浓度对大气各种性质的影响,反过来根据这些影响探索物理、化学、生物、电子、光学等新技术在环境监测仪器和监测技术中的应用,研究新的颗粒物浓度检测方法。同时,促进监测仪器科研与生产结合,加快环境监测技术的创新和成果转化,逐步提高国内监测仪器的研发水平。