紫外可见分光光度计的原理是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析,定量分析及结构分析,所依据的光谱是分子或离子吸收入射光中的特定波长的光而产生的吸收光谱。根据所吸收光的波长区不同,分为紫外分光光度法和可见光光度法,合称为紫外可见分光光度法。

 紫外可见分光光度法是研究物质在紫外可见光波下的分子吸收光谱的分析方法,在光的性质中200-400nm波长的光叫做紫外(UV),从400-800nm叫做可见(VIS),从800nm到近1毫米是红外(IR)。仅可见光才能被我们的眼睛看见,而包含所有波长的光,包括紫外,可见光和红外叫做白光(例如太阳光),太阳光发出的白光可以通过棱镜滤光片等分成七种类似彩虹的颜色,白光即包含所有波长的光,单色光即单波长的光。

根据朗伯比尔定律:A=kbc表明:一定温度下,一定波长的单色光通过均匀的、非散射的溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。

A=kbc式中:

A:吸光度;描述溶液对光的吸收程度;

k:摩尔吸光系数,单位L·mol-1·cm-1;

b:液层厚度(光程长度),通常以cm为单位;

c:溶液的摩尔浓度,单位mol·L-1;

我们可以举个小例子来说明一下,有甲乙两个相同材质的玻璃杯,其中甲装有洁净的水而乙装的是浑浊的水把它们放在靠窗的地方,这时甲可以透过大部分的光,而乙则没有那么多光透过,在这里透过的光的比率称为透射比,透射比通常以百分比形式来表示(%T)相反的从窗口透过的的光被吸收比率*叫做吸收率(Abs)。

物质对光的吸收是选择性的,利用被测物质对某波长的光的吸收来了解物质的特性,通过测定被测物质对不同光的吸收强度,以波长为横坐标,吸光度为纵坐标即可得出该物质在测定波长范围的吸收曲线。在吸收曲线中,通常选用*大吸收波长进行物质含量的测定。例如苹果是红色的,为什么苹果看上去是红色的而不是别的颜色?*好比我们对某种颜色喜欢一样,物质对颜色也有偏好,当某种物质暴漏包含各种颜色的光中时,它吸收并仅保存了光中它*喜欢的颜色,它不喜欢的颜色被反射,这*形成了我们眼中看到的某种物质的颜色。

根据这一特性我们即可通过颜色密度来对物质进行定量分析以此来测定某种物质(溶液)的含量,例如我想测自来水里的铁,通常无法直接采用分光光度法进行测量,因此在这种方式测定中需要添加与目标物质反应显色的着色试剂,里面含铁越多则颜色*越深(高吸光度)少则相反。这时我们需要配置标准溶液的校正曲线,从低到高来测量标准浓度的吸光值获得该测量的校正曲线。在定量分析中还要考虑物质的吸收波长,通过观察测量已经着色的吸收光谱来选择吸收*大而相对平滑的波长(现在多数仪器已能自动测量物质的*佳吸光率如HACH的DR3900)。

实际测量时光谱与测定条件也有密切的关系,测定条件如温度,溶剂极性等不同,吸收光谱的形状、吸收峰的位置、吸收强度等都可能发生变化。对于溶剂的选择要注意尽量选用低极性溶剂同时能很好的溶解被测物,并形成溶液具有良好的化学性质和光化学的稳定性,溶剂在样品的吸收光谱区无明显的吸收并注意保证实践条件的一致性,这样既能保证*小误差又可达到*佳的测量结果。